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Abstract. Some recent authors have studied sloshing frequencies of fluid in a container, but have ignored the 
well-established literature on the asymptotic structure of the modes of linear oscillations. The present discussion 
draws attention to the more efficient solution methods thus suggested and relates the results to known asymptotic 
forms. 

1. Introduction 

The study of the resonant frequencies of oscillation of a fluid, possibly unbounded, with a 
free surface and rigid boundaries has a history that extends over more than two centuries, 
having been studied by Euler in 1761. The illustrious list of contributors also includes 
Poisson, Green, Airy, Stokes, Rayleigh, Kirchhoff and Poincar6. References to these and 
other authors can be found in the excellent review by Fox & Kuttler [1]. For a broader view 
of the subject, the reference list includes two papers [2, 3] that present distinctly different 
discussions of nonlinear resonant frequencies• Very few exact solutions are known but those 
for the rectangular basin in two dimensions and for the circular cylinder of uniform depth in 
three dimensions, display clearly an important feature of the high frequency modes. The free 
surface condition mandates a rapid exponential decay with depth and hence such oscillations 
are essentially confined to within a thin layer below the surface. Evidently, this physical 
feature is likely to be common to all geometries and, for two-dimensional sloshing fre- 
quencies, three conjectures are offered by Fox & Kuttler. Their first conjecture can be 
deduced from the other two which are stated as follows: 

• , \ 

C2. The leading term in the asymptotic formula for the sloshing eigenvalues is independent 
of the shape or depth of the bottom or the area of the container, but depends only on the 
width of the free surface and the angles at which the sidewalls intersect the free surface. 

C3. The eigenvalues of a region with sloshing surface - 1 ~< x ~< 1, whose sidewalls intersect 
the surface with interior angles a~-, have the asymptotic form 

1 1 ) 7r (1.1) 
An-- n + 2  4-~ 2 "  

C2 was established by Davis [4] for vertical intersections by arguments including conformal 
mapping that can be readily extended to domains with a # ½, particularly now that Mclver 
[5] has importantly solved the sloshing problem for a symmetric family of containers with 
O < a < l .  
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C3 is verified not only by the elementary vertical walls case (a = ½) but also for the infinite 
dock with gap (a = 1). Prior to the calculations of Miles [6], the two-dimensional eigen- 
frequencies were computed by Davis [7] who also established the asymptotic form and three 
error terms by using the known semi-infinite dock potential to construct an asymptotic 
solution of sufficient accuracy for high frequency sloshing modes in the presence of an 
infinite dock with gap. 

Mclver's solution, in terms of bipolar coordinates, is for a circular container filled to 
various depths determined by a. His results, for cos aTr decreasing from 0.8 to - 1  in 
increments of 0.2, are not displayed in a form that allows easy comparison with (1.1). The 
length scale must be changed from the container radius to the semi-width of the free surface 
which varies with depth. Table 1 shows a selection of Mclver's computed values, appropri- 
ately rescaled, and, for comparison, the corresponding values of (1.1). The evidence for the 
validity of C3 appears to be convincing. Moreover, since the leading term is almost 
immediately established in Davis' analysis, the asymptotic form (1.1) for the general case 
may be similarly deduced by noting the appearance of the phase angle (1 - 1/2a) 7r/4 in the 
terms that dominate the surface disturbance in the standing wave sloping beach solutions 
given by Alker [8], after extraction from the work of Peters [9]. 

For sloshing in a half space bounded by a rigid plane with a circular hole, Troesch & 
Troesch [10] conjectured the asymptotic form 

( 1 1 i m _ l l )  Am--  

for the nth eigenvalue in the mth azimuthal mode. By reference to the zeros of J ' ,  the 
corresponding result for a circular cylinder of uniform depth is 

1 1 
I m -  l l ) .  

/ 

Table 1. A selection of Mclver's results, rescaled and compared with (I.1), for sloshing in a circular container filled 
so that aTr is the angle subtended by the fluid at the free surface 

Mclver results Asymptotic estimates 

cos ~rr Antisymmetric Symmetric a~r Antisymmetric Symmetric 

0.8 0.62631 1.75745 0.6435 0.439025 2.00982 
3.31299 4.81815 3.58062 5.15141 
6.46034 8.09302 6.72221 8.29301 
9.70788 11.3262 9.86380 11.4346 

0.4 1.06561 2.64803 1.159 1.29200 2.86280 
4.30640 5.92127 4.43359 6.00439 
7.51428 9.09742 7.57518 9.14598 

10.6765 12.2530 10.7168 12.2876 

-0 .2  1.47705 3.15142 1.772 1.66004 3.23083 
4.75290 6.33680 4.80163 6.37242 
7.91512 9.49069 7.94322 9.51402 

11.0650 12.6383 11.0848 12.6556 

-0 .8  1.81284 3.37616 2.498 1.86234 3.43313 
4.98833 6.54367 5.00393 6.57473 
8.13573 9.69514 8.14552 9.71632 

11.2798 12.8420 11.28711 12.8579 
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Table 2. A selection of McIver's results, rescaled and compared with (1.2), for sloshing in a spherical container 
filled so that c~r is the angle subtended by the fluid at the free surface 

Mclver results Asymptotic estimates 

cos c~- m = 0  m = 1 m = 2  m = 0 , 2  m = 1 

(I.8 

0.4 

- 0 . 2  

- 0 . 8  

2.29567 0.64339 1.26475 2.79522 1.22442 
5.55368 3.72049 5.03714 5.93681 4.36600 
8.85337 7.12927 8.57666 9.11784(/ 7.50761 

12.0713 10.4153 11.8854 12.2200 10.6492 

3.34541 1.15711 2.18834 3.64819 2.07740 
6.65936 4.92015 6.31176 6.78979 5.21899 
9.84794 8.195311 9.63091 9.93138 8.36058 

13./1112 11.3861 12.8511 13.0730 11.5022 

3.85855 1.75205 3.08555 4.01623 2.44543 
7.07296 5.38200 6.77484 7.15782 5.58703 

10.2410 8.60190 1(I.0437 10.2994 8.72862 
13.3965 11.7779 13.2476 13.4410 11.8702 

4.05851 2.37558 3.78928 4.21853 2.64774 
7.26834 5.67209 7.11493 7.36012 5.78933 

10.4376 8.85290 10.3261 10.5017 8.93092 
13.5942 12.0134 13.5056 13.6433 12.0725 

It is now easy to conjecture that, for an axisymmetric basin that intersects the free surface at 
an interior angle aTr, the sloshing mode eigenvalues have asymptotic form 

( 1 1 [m - 111. (1.2) n -  + 

Table 2 shows that this new conjecture is consistent with Mclver's computations, based on a 
solution in terms of toroidal coordinates for a partially filled spherical container and rescaled 
as in Table 1. 

2. Efficient solutions based on known asymptotics 

Evans & Mclver [11] and Watson & Evans [12] have extended the study to include 
containers that have another body either attached to a rigid wall or fixed in the free surface. 
The solution method employed by both sets of authors involves a complete set of vertical 
oscillatory eigenfunctions and hence cannot accurately approximate the underlying structure 
of sloshing modes in the presence of horizontal and vertical boundaries, namely, horizontal 
oscillations and exponential dependence on the vertical coordinate. These authors also made 
no reference to established or reliably conjectured asymptotic forms for the sloshing 
frequencies. Since these are known to differ only by exponentially small terms from the 
sloshing frequencies of the rectangular basin, it is apparent that any helpful calculation needs 
to have high accuracy and that the Fourier terms associated with the rectangle will provide, 
on matching along a submerged horizontal line, a matrix with pronounced diagonal 
dominance, particularly in the part to be truncated. Thus the high frequency modes play an 
important role in choosing an efficient truncation of the infinite matrix. 

The basic problem considered by Watson & Evans has a rectangular block either attached 
to the bottom (case I) or fixed in the surface (case II) of a rectangular container. For 
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two-dimensional sloshing modes of small amplitude, choose Cartesian coordinates x, y with y 
vertically downwards and y = 0 the undisturbed free surface. The rigid fluid container is set 
a t x = + b , y = d a n d t h e b l o c k o c c u p i e s  I x l ~ < a < b , O < h ~ < y ~ < d ( c a s e I )  o r O ~ < y ~ < h < d  
(case II). The standard linearized theory of water waves permits the introduction of a 
velocity potential that, for periodic motion of radian frequency to, takes the form 

• (x, y, t) = Re ~b(x, y) e -iot , 

w h e r e  ~2~) = 0 in the fluid, 

K~b + 0__~_~ = 0 at the free surface, (2.1) 
Oy 

with K = toZ/g, and ~b has zero normal derivative at all rigid boundaries. Thus is defined an 
eigenvalue problem for K in which the geometry ensures that the eigenfunctions are either 
even or odd functions, of x. 

Evidently the most efficient solution method is that which exploits the physical reality that 
the bottom block is confined to a region where the sloshing modes have exponentially small 
amplitude while the surface block separates regions of fluid whose only connection is via 
depths where amplitudes are again exponentially small. Matching on a submerged line, 
where all but the lowest modes are evanescent, then causes only minor changes to their 
frequencies. 

Case I 

For an even mode, a solution ~b,(x, y) is given by 

~ [  nTr n~r ] n T r x  
oh, = A ,  cosh - ~  (h - y) + C, sinh y (h - y) cos ---ff-- 

n = l  

1 ~ cosh nrr(d - y)/(b - a) 
,=1 coshnrr(d h)/(b a) cos. ( t 

( 0 < y < h ,  [xl < b),  

(h< y<d, a<[xl<b). 

Continuity of ~b s within the fluid now yields 

oc 

Bp = ~'~ A n Otnp ' 
n = l  

where 

anp ~- 

2n(1 - a/b) sin nlra/b 
~[p2 _ n2(1 _ a/b)2] 

(-1)"-p 

if p ¢ n ( 1 -  a/b), 

if p = n ( 1 -  a/b). 
(2.2) 

Meanwhile, the continuity of Ocbslay within the fluid and its vanishing at the top surface of 
the block yield 

Cq = ~ FqpAp (q >1 1) , 
p = l  
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where 

(d-h) 
Fqp = q ~i= nap, aq, tanh nTr ~ - a  (q ~> 1) 

in which the series converges quickly since the terms are O(n 3). When the free surface 
condition (2.1) is applied to 05~, it follows that the eigenvalues (Kzmb/Tr, m >1 1} for even 
modes of oscillation are those of the infinite matrix F ~E whose elements are defined by 

q~h 
Fqp = 6qp ~- I~qp tanh b 

(p ,  q ~> 1). (2.3) 

Similarly, the eigenvalues {K2mb/Tr, m >! 1} for odd modes of oscillation are those of the 
infinite matrix P 1/~ whose elements are defined by 

[ ~ q p = ( q -  ~) (6qptanh(q  _ ~) ,B'hT -~- ~,qp) 

1)  7rh 
Fqp = ~qp -~- Fqp tanh q - ~ b 

(p ,  q i> 1) ,  (2.4) 

where 

~qp= 4 (1--b)2(p - ~)cos(p-½) ~-~ cos(q-2) ~-~ 

x 2 n tanh[nTr(d - h) / (b  - a)] 

n= l [n2  ( p l 2 - _ 1 _ (,  )21[n  (q 
Case H 

For an even mode, a solution 05s*(X, y) is given by 

{m* coshno( ) =1 
( 0 < y < h ,  a<lxl<b), 

1 ~ cosh nTr(d - y) /b  nTrx 
05*= ~ B ~ + n= , ~'~ B* cosh ~ (  d ~ h ) / b cos - - ~  (h<y<d, Ix[< b). 

After  matching at y = h, application of the free surface condition (2.1) to 05* shows that the 
eigenvalues { K ~ m ( b -  a)/Tr; m >I 1} for even modes of oscillation are those of the infinite 
matrix (F*)-I_E * whose elements are defined by 
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E,-( ,) qp q 6 qp coth ~ + Fqp 

F* , q~rh qp = 6 qv + F qp coth b - a 

(p,  q t> 1),  (2.5) 

where 

Fqp=p ~ 1_ [n~_ ] 
n=l n OlnpOLnq coth (d - h) (q ~> 1). 

Similarly, the eigenvalues { K~m_ 1 (b - a)/Tr; m/> 1 } for odd modes of oscillation are those 
of the infinite matrix (_p,)-i/~,, whose elements are defined by 

1 rrh Eqp = < q - ~)(6qp C°thI ( q - ~) -~-~_ a ] + I'qp ) 

= ~ q p  -~- rqp coth q - ~ 

(p,  q/> 1),  (2.6) 

where 

0_ )2 
qP 7.t. 2 

E 
,=1 _ 1  2 2 1 2 

Computed values of {Kmb/Tr ; rn >1 1} and {K*(b - a)/Tr; m >i 1} are displayed in Tables 3 
and 4 respectively, for various values of a/b, d/b, h/d, and are seen to be close to half 
integers for m odd or integers for m even, as expected from the pronounced diagonal 
dominance exhibited by the matrix elements. 20 equations and 20 terms in each series 
sufficed for all values given. Ursell [13] showed that the eigenvalues could be simply 
estimated by applying Green's theorem to 4) and an approximate eigenfunction that exactly 
satisfies (2.1). His method shows that in these cases the mth eigenvalue differs from ½m by 
terms containing the factor exp(-Kmh ) or exp(-K*mh). The matrices in (2.3-6) suggest that 
the exponential factor in the asymptotic error is exp(-2Kmh ) or exp(-2Km*h) in cases I and 
II respectively. 

It may be observed that if the block is placed asymmetrically in - c  < x < a, where [c] < a, 
then each set of eigenvalues and eigenfunctions bifurcates into two sets which in case I have 
the same asymptotic form but in case II have asymptotic forms based on the lengths (b - a) 
and (b - c) with sloshing essentially confined to one side of the surface block. 

A related three dimensional problem, studied by Watson and Evans [12], concerns the 
resonant frequencies of oscillation of a liquid completely filling a circular cylindrical 
container of depth d and radius b with a free surface radius a < b. The two dimensional 
results suggest that the finite values of b and d cause at most exponentially small changes to 
the asymptotic form of the eigenvalues of Ka for the special case of a fluid bounded by a 
rigid half-plane containing a circular hole, considered by Miles [6] and Troesch and Troesch 
[101. 
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Table 3. Values of Kmb/~r for sloshing in a rectangular container of width 2b and depth d with a bottom block of 

width 2a and height ( d -  h) 

a/b = 1/4 a/b = 1/2 a/b = 3/4 

Odd Even Odd Even Odd Even 

d/b = 1/2 
h /d  = 0.5 

h /d  =0.2 

d/b  = 2  

h/d  = 0.5 

hid  = 0.2 

h/d  = 0.i 

0.21871 0.83910 0.19433 0.71825 0.18740 1/.66124 
1.41723 1.93874 1.34679 1.92217 1.25381 1.85238 
2.47657 2.98592 2.45048 2.97042 2.42029 2.95899 
3.49173 3.99614 3.48540 3.99288 3.47902 3.98914 
4.49785 4.99828 4.49611) 4.99788 4.49432 4.99704 

0.10785 0.62543 0.084590 0.38431 0.078462 0.31188 
1.25329 1.69487 0.91015 1.53289 0.68914 1.18326 
2.26869 2.82368 2.09431 2.59493 1.75544 2.36431 
3.31130 3.87067 3.14297 3.72557 2.97696 3.57198 
4.38043 4.89780 4.27117 4.79570 4.14485 4.70077 
5.42699 5.93076 5.33540 5.87480 5.24921 5.79482 
6.45010 6.95960 6.39743 6.91448 6.32471 6.87319 

0.46567 0.99877 0.46009 0.99711 0.45868 0.99634 
1.49994 2.00000 1.49987 1.99999 1.49977 1.99999 
2.50000 2.00000 2.50000 3.00000 2.49992 3.00000 

0.31057 0.94755 0.28497 0.88259 0.27890 0.85282 
1.48605 1.99136 1.46301 1.98819 1.43620 1.97689 
2.49783 2.98553 2.49516 2.99890 2.49228 2.99754 

0.18875 0.81742 0.15997 0.63287 0.15269 0.56341 
1.41632 1.90824 1.26538 1.86626 1.12402 1.73158 
2.45286 2.96788 2.40200 2.92791 2.32832 2.89605 
3.47639 3.98837 3.45717 3.97554 3.43786 3.96236 
4.49150 4.99516 4.48431 4.99012 4.47691 4.98587 

Table 4. Values of K2(b - a ) /~ fo r s losh ing in  a rectangular container of width 2b and depth d with a bottom block 
of width 2a and depth b 

a/b = 1/4 a/b = 1/2 a/b = 3 / 4  

Odd Even Odd Even Odd Even 

d/b = 1/2 

h /d  = 0.5 

h /d  =0.2 

d/b  = 2 
h /d  =0.2 

h /d  = 0.1 

0.46183 0.97251 0.49571 0.99820 0.50260 1.00018 
1.50025 2.00010 1.50063 2.00017 1.50000 2.00000 
2.50039 3.00016 2.50004 3.00001 2.50000 3.00000 

0.49289 0.98993 0.51785 1.01886 0.51647 1.00926 
1.52077 2.01759 1.51388 2.00973 1.50264 2.00098 
2.51266 3.00963 2.50501 3.00313 2.50060 3.00019 
3.50629 4.00454 3.50167 4.00099 3.50005 4.00002 
4.50300 5.00210 4.50057 5.00032 

0.51204 1.00323 0.50468 1.00072 0.50039 1.00001 
1.50065 2.04919 1.50005 2.00001 1.50000 2.00000 
2.50003 3.00001 2.50000 3.00000 2.50000 3.00000 

0.52836 1.01731 0.51662 1.00892 0.50484 1.00078 
1.50829 2.00399 1.50226 2.00082 1.50006 2.00000 
2.50175 3.00081 2.50022 3.00007 2.50000 3.00000 
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On suppressing the time factor as above, the boundary value problem for th(r, 0, z) may be 
expressed in terms of suitably chosen cylindrical polar coordinates (r, 0, z) in the form 

V2~b=O ( r < b ,  O < z < d ) ,  

0~_~=0 a t z = O  r < a  K ~  + Oz ' ' 

{ ~ = 0 ,  a < r < b  0 4 ' = 0  at ' 
Oz d ,  r < b  , 

O~b=o a t r = b ,  O < z < d .  
Or 

On writing 

¢~ = E ~m( r, z) eimO , 
m = O  

the adaptation of Miles' method to finite boundaries yields the integral equation, for each 
m ~ 0 ,  

fro(r) = Ka -1 (a gin( r, ~?)fm(~)~? dT1 (0 <~ r <<- a) ,  (2.7) 
3 o  

where 

O(b m f~(r) = ~ (r, O) 

a}l gin(r, "O) = 2 -~ = 

(m/>0) ,  i.e. f o f ° ( r ) r d r = O '  

k 'pJm(k 'pr /b)J ,~(k"  p T1/b) 
k , e  _ m 2 ) [ J , ~ ( k ' q ) ]  2 

m p  

! coth kmpd/b,  (2.8) 

t and Jm(kmp) = 0 ( p  ~ 1). 
In the infinite depth case, d--+~ and then, according to Sneddon ([14], section 2.2), the 

series in (2.8) can be summed to yield the kernel 

f~  2__~a f= K " ( tb___~) 
[gm(r, r/)]d= ~ : a Jo Jm(kr)Jm(kTI)dk-  ~- )o  I,~(tb) Im(tr)Im(tT1)dt 

in which the first term is that used by Miles. When each integral equation in (2.7) is 
converted, as described by Miles, to the system of N equations 

A t = Ka Z C,~A~,  
n 

the coefficients can now be shown, with n,, = n + l (m - 1), to be given by 

[1 - 4 ( / -  n)]- 2-[4(1,. + n , . )  - 1] - 1,.(tb/a)' I2tm(t)I2""(t) 7 

e x p ( - k ' J / b )  Jz , , (k 'pa/b)J2,m(k 'pa/b)  
+ ( -1 )  '+" Z s i n h ( k ' j / b )  ~ ~ - - - - : 7 ,  j .  p=l kmp[Jm(kmp)] (kmp - m ) 

(2.9) 
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Here,  the range of l and n is [1, N] for m/> 1 but, due to the compatibility condition, is 
[2, N + 1] for m = 0. So l m, n m > 0 and, in particular, the range of values of l 0, n o is identical 
to that of 12, n2. The second and third contributions to (2.9) evidently represent modi- 
fications, due to the container's finite extent and depth respectively, of the matrix con- 
structed by Miles and observed to be the same for the cases m -- 0, 2. Since the terms in the 
series are at most of order e x p ( - 2 k ' l d / b  ), the influence of finite depth on the asymptotic 
form of the eigenvalues of Ka is seen to be exponentially small as in the two dimensional 
modes.  Thus the effect of finite extent can most conveniently be considered by setting d = 
in (2.9)  and using an IMSL routine to compute inverse eigenvalues of the N × N matrix __C m 
for m = 0, 1, 2. At least the lowest ½N values of Ka/Tr are then obtained to the accuracy 
displayed in Table 5, which shows the remarkable durability, as b is reduced towards a, of 
the asymptotic form A~," - 7r(n - ~ + ½1m - 1]) for the nth eigenvalue of Ka in the mth 
azimuthal mode when the sloshing is in a half space. The crucial importance of the shape of 
the rigid boundary at its intersection with the free surface is amply demonstrated and the 
transition, as b approaches a, to the asymptotic form 

( 1 l Im- 11) = n-a+  

must be late and rapid. The presentation of Watson & Evans' results does not allow 
examination of this limit nor does their method, involving matching at the cylinder r = a, 
take exact account of the important rim edge at z = 0, r =- a. 

Table 5. Values of Ka/~r, for various b/a, for sloshing frequencies in the lowest three azimuthal modes of fluid in an 
infinitely deep container of radius b with a circular aperature of radius a 

b/a = 3 b /a  = 2  b /a  = 1.5 b/a  = 1.2 b/a  = 1.05 

m =  1 
0.87347 0.84551 0.77959 0.68709 0.61593 
1.87322 1.85297 1.80888 1.75591 1.72031 
2.87362 2.85814 2.82303 2.77990 2.75009 
3.87393 3.86177 3.83295 3.79620 3.76994 
4.87414 4.86430 4.84023 4.80850 4.78515 
5.87428 5.86611 5.84566 5.81801 5.79721 

m =  0 
1.31099 1.30329 1.28495 1.25789 1.23485 
2.33638 2.32903 2.30990 2.28158 2.25832 
3.34719 3.34105 3.32373 3.29706 3.27499 
4.35323 4.34820 4.33316 4.30907 4.28873 
5.35710 5.35293 5.33997 5.31854 5.30008 
6.35980 6.35627 6.34506 6.32606 6.30939 

m =  2 
1.31035 1.29349 1.24003 1.13482 1.02727 
2.33596 2.32243 2.28246 2.21926 2.16965 
3.34689 3.33623 3.30404 3.25439 3.21618 
4.35300 4.34448 4.31797 4.27668 4.24460 
5.35692 5.34993 5.32771 5.29252 5.26478 
6.36965 6.35379 6.33483 6.30437 6.28000 
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